Search results for "Celestial mechanics"
showing 10 items of 22 documents
Order in the chaos? The strange case of accreting millisecond pulsars
2007
We review recent results from the X-ray timing of accreting millisecond pulsars in Low Mass X-ray Binaries. This is the first time a timing analysis is performed on accreting millisecond pulsars, and for the first time we can obtain information on the behavior of a very fast pulsar subject to accretion torques. We find both spin-up and spin-down behaviors, from which, using available models for the accretion torques, we derive information on the mass accretion rate and magnetic field of the neutron star in these systems. We also find that the phase delays behavior as a function of time in these sources is sometimes quite complex and difficult to interpret, since phase shifts, most probably …
Dynamical environments of MU69: a state of chaotic clearing
2018
AbstractThe second (after Pluto) plausible target object for the New Horizons mission is 2014 MU69. It is a classical TNO, a primordial contact binary. Identifying any material in the vicinities of a target object is of an especial concern for planning cosmic fly-byes, as it is hazardous for a space probe. Luckily, no such material has been reported for MU69 up to now. The point of our report is that this lucky absence is just a dynamical consequence of the physical nature of MU69. Spinning gravitating dumbbells create zones of dynamical chaos around them, and this has a clearing effect: any material put in orbits around a rotating dumbbell (e.g., any material ejected from its surface) cann…
Chaotic dynamics around cometary nuclei
2017
We apply a generalized Kepler map theory to describe the qualitative chaotic dynamics around cometary nuclei, based on accessible observational data for five comets whose nuclei are well-documented to resemble dumb-bells. The sizes of chaotic zones around the nuclei and the Lyapunov times of the motion inside these zones are estimated. In the case of Comet 1P/Halley, the circumnuclear chaotic zone seems to engulf an essential part of the Hill sphere, at least for orbits of moderate to high eccentricity.
OSSOS XVIII: Constraining migration models with the 2:1 resonance using the Outer Solar System Origins Survey
2019
Resonant dynamics plays a significant role in the past evolution and current state of our outer Solar System. The population ratios and spatial distribution of Neptune's resonant populations are direct clues to understanding the history of our planetary system. The orbital structure of the objects in Neptune's 2:1 mean-motion resonance (\emph{twotinos}) has the potential to be a tracer of planetary migration processes. Different migration processes produce distinct architectures, recognizable by well-characterized surveys. However, previous characterized surveys only discovered a few twotinos, making it impossible to model the intrinsic twotino population. With a well-designed cadence and n…
Orbital Structure of the Two Fixed Centres Problem
1999
The set of orbits of the Two Fixed Centres problem has been known for a long time (Charlier, 1902, 1907; Pars, 1965), since it is an integrable Hamiltonian system.
Reflections on the Hohmann Transfer
2004
Walter Hohmann was a civil engineer who studied orbital maneuvers in his spare time. In 1925, he published an important book (Ref. 1) containing his main result, namely, that the most economical transfer from a circular orbit to another circular orbit is achieved via an elliptical trajectory bitangent to the terminal orbits. With the advent of the space program some three decades later, the Hohmann transfer maneuver became the most fundamental maneuver in space. In this work, we present a complete study of the Hohmann transfer maneuver. After revisiting its known properties, we present a number of supplementary properties which are essential to the qualitative understanding of the maneuver.…
Collision orbits in the oblate planet problem
1984
Some of the properties of the oblate planet problem are derived. We use the technique of blowing up the singularity to study the collision orbits. We define some families of them in terms of their asymptotic behavior.
Figures of equilibrium in close binary systems
1992
The equilibrium configurations of close binary systems are analyzed. The autogravitational, centrifugal and tidal potentials are expanded in Clairaut's coordinates. From the set of the total potential angular terms an integral equations system is derived. The reduction of them to ordinary differential equations and the determination of the boundary conditions allow a formulation of the problem in terms of a single variable.
On the co-orbital asteroids in the solar system: medium-term timescale analysis of the quasi-coplanar objects
2023
The focus of this work is the current distribution of asteroids in co-orbital motion with Venus, Earth and Jupiter, under a quasi-coplanar configuration and for a medium-term timescale of the order of 900 years. A co-orbital trajectory is a heliocentric orbit trapped in a 1:1 mean-motion resonance with a given planet. As such, to model it this work considers the Restricted Three-Body Problem in the planar circular case with the help of averaging techniques. The domain of each co-orbital regime, that is, the quasi-satellite motion, the horseshoe motion and the tadpole motion, can be neatly defined by means of an integrable model and a simple two-dimensional map, that is invariant with respec…
Quantum Mechanics of Point Particles
2013
In developing quantum mechanics of pointlike particles one is faced with a curious, almost paradoxical situation: One seeks a more general theory which takes proper account of Planck’s quantum of action \(h\) and which encompasses classical mechanics, in the limit \(h\rightarrow 0\), but for which initially one has no more than the formal framework of canonical mechanics. This is to say, slightly exaggerating, that one tries to guess a theory for the hydrogen atom and for scattering of electrons by extrapolation from the laws of celestial mechanics. That this adventure eventually is successful rests on both phenomenological and on theoretical grounds.